

Trace Elemental Analyzer
NSX-5000H_{SERIES}
Horizontal Furnace System

Nittoseiko Analytech Co., Ltd.

 Instru

NSX-5000H

NSX-5000H series contributes to the reduction of environmental load through advanced technologies. It enables automatic, safe and highly sensitive measurement of trace nitrogen, sulfur and chlorine in liquid or solid samples. It can be used in a wide range of applications such as quality control of recycled petroleum respectively chemical products or automotive fuels and environmental analysis.

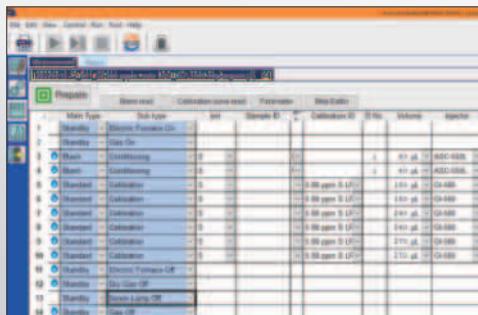
Features

User-friendly software

The improved user interface can be adjusted to the requirements of different operators.

Simple mode

Simple mode allows easy operation in a routine environment, using predefined methods and guided start-up and shut-down procedures.


Advanced mode

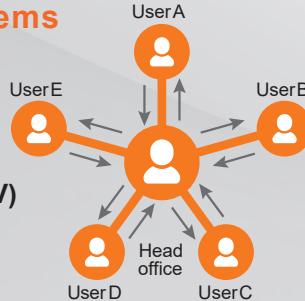
Advanced mode gives full flexibility for method development, customization and access to quality control and audit trail functions.

Automatic start-up and shut-down

Instrument start-up and shut-down procedures can be automated including flexible temperature and gas flow settings.

Audit trail

All operations and instrument conditions are recorded and allow full traceability of the measurement process.

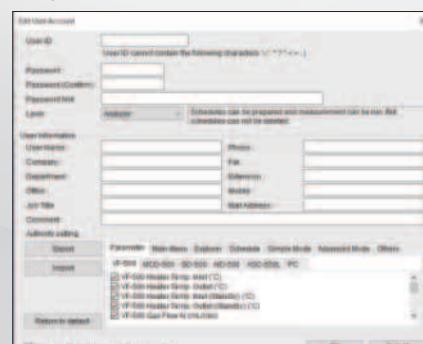

Ref	Type	Date	Setting	Message	User ID
10	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
20	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
21	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
22	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
23	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
24	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
25	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
26	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
27	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
28	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
29	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
30	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
31	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
32	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
33	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
34	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
35	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator
36	Info	4/25/2022 23:58:04 PM	Step	Step definition (General) 18_1_001_G_00000000000000000000000000000000	Administrator

Import/Export function

Measurement related data and software related settings can be exported and (re-)imported. This is not only for data security and backups, but makes transferring methods and user settings to other computers and instruments easy.

Imported/Exported items

- Schedule
- Calibration curve
- Blank
- Method
- Measurement results (CSV)
- Combustion program
- Audit trail
- User authority



Link to LIMS

Automatic output of measurement data to the network allow seamless integration into laboratory data management.

User management

Multiple users with different access levels help to protect data from unintended changes and support a clean and easy to operate user interface.

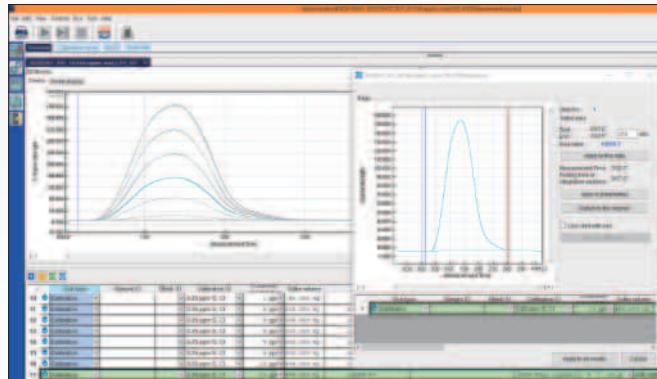
Easy Daily maintenance

Unique openable furnace and user-friendly connectors make routine visual checks and maintenance of the pyrolysis tube a matter of seconds, thus increasing consumable lifetime and performance.

Low running cost

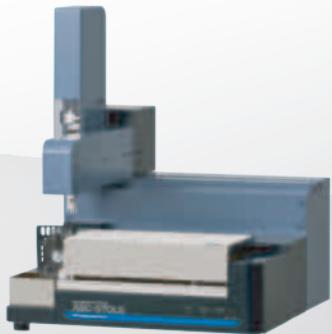
Less gas consumption than before. It is also available to shut off the gas or change the gas to standby at the end of measurement automatically.

Rapid analysis with automatic boat control


Putting the sample boat into the electric furnace with an appropriately controlled speed prevents incomplete combustion and enables rapid measurement.

New programs can be created easily.

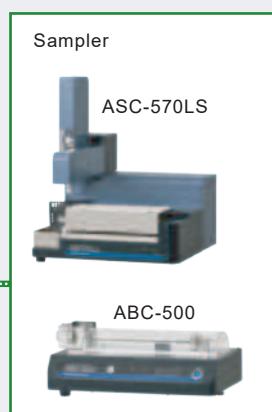
Reanalysis function


※Available at SD-500 or ND-500

The manual peak reintegration enables users to improve or correct integration results after measurement if required.

Options

Automatic Sample Changer for Liquid and Solid ASC-570LS


Samples tray type	Vial tray for liquid samples
	Boat tray for solid and non-volatile or viscous samples
Boat cooling	Electronic cooling (Peltier)
Ambient Temperature	10 to 35 °C (No fluctuation during measurement)
Power supply	AC 100/115/230/240 V, 50/60 Hz, 192 VA
Mass and weight	500 (W) × 460 (D) × 600 (H) mm, Approx. 27 kg
Solid	Volume 30 mg or less
	Sample boat quantity 49 pcs
	Boat operation 99 positions + end position + cooling position
Liquid	Sample boat material Ceramic (Standard)
	Sample container Vial with a septum, 4 mL or 2 mL capacity
	Sample vial quantity 4 mL- 84 pcs, 2 mL- 120 pcs
Injection system	Gastight Microsyringe 25, 50, 100 µL

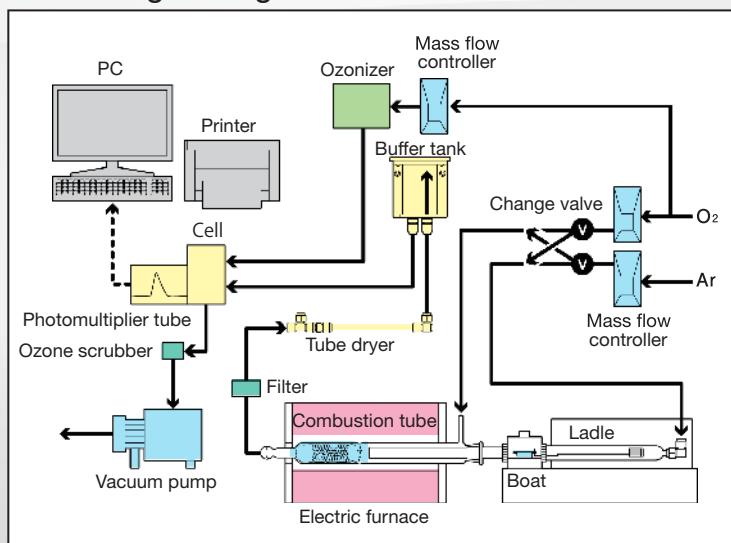
Automatic Boat Controller ABC-500

Sample type	Solid/Liquid
Sample volume	Solid: 30 mg or less, Liquid: 100 µL or less
Sample boat material	Ceramic, Quartz
Boat cooling	Electronic cooling (Peltier)
Power supply	AC 100/115/230/240 V, 50/60 Hz, 40 VA
Mass and weight	450 (W) × 250 (D) × 180 (H) mm, Approx. 9 kg

System Configuration

Standard test method

ASTM D4629, D5762, D6069, D7184, JIS K2609


Measurement principle

Sample is loaded by sample boat into a high-temperature (900 to 1000 °C) pyrolysis tube with argon carrier gas. After nitrogen compounds in the sample are pyrolyzed, it is combusted, oxidized, and converted to nitric oxide (NO). After removing moisture from the combustion gas by a dehumidifier (tube dryer), and the following oxidation reaction occurs by the reaction of NO with ozone.

By this reaction, 590 to 2,500 nm of emitting light is generated. The optical intensity of this light is proportional to the NO concentration at a wide wave-length range. After emitted light is detected by a photomultiplier tube and signal processing is performed, an area value is obtained. By using the calibration curve, the total nitrogen concentration in the sample is calculated. CO_2 and SO_x generated during oxidative combustion can cause interferences. However, the interferences can be decreased to not significant level by applying reduced pressure inside the reaction chamber.

CLD Nitrogen Diagram

Specification for Trace Nitrogen Analyzer NSX-5000H /ND

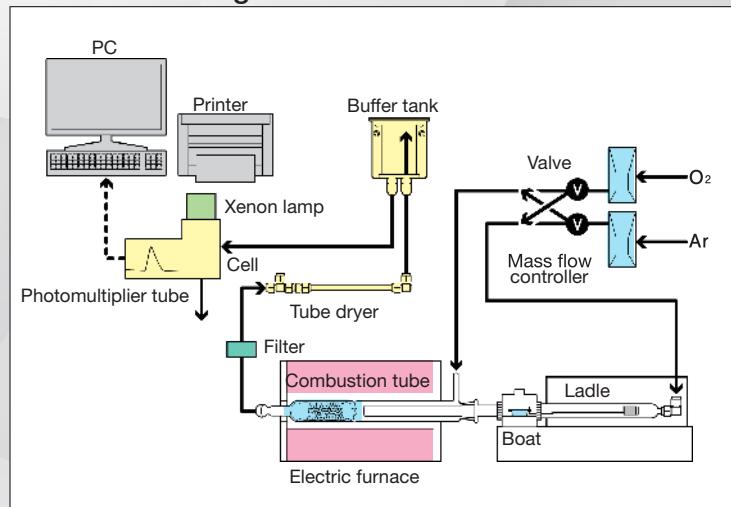
	Nitrogen measurement
Sample	Liquid (non-aqueous)/ Solid
Analytical method	Oxidative combustion and chemiluminescence detection
Furnace	Max. 1,100 °C, Openable electric furnace, 2 heating zones
Measuring range*	Liquid: 0.05 ~ 10,000 µg/mL, Solid: 0.5 ~ 5,000 µg/g
Sample amount	Liquid: Max 100 µL, Solid: Max 30 mg
Measurement time	Approx. 8 min * It depends on the sample volume and measurement condition.
Vacuum pump	Diaphragm type dry vacuum pump
Gas supply	Argon: Purity 99.98 % or more, 0.3 ± 0.1 MPa, Oxygen: Purity 99.7 % or more, 0.3 ± 0.1 MPa
Power supply	HF-500: AC100/115 V (50/60 Hz), 1100 VA, AC230/240 V (50/60 Hz), 1800 VA ND-500: AC100~240 V, 300 VA
Mass and weight	HF-500: Approx. 320(W) x430(D) x500(H) mm, Approx. 25 kg ND-500: Approx. 220(W) x375(D) x500(H) mm, Approx. 22 kg

*Actual measuring range depends on the sample, the matrix, the purity of reagents, gases and the condition of the unit.

Standard test method

ASTM D5453, D7183, ISO 20846, JIS K2541-6

Measurement principle


Sample is loaded by sample boat into a heated (800 to 1100 °C) pyrolysis tube with argon carrier gas. After sulfur compounds in the sample are pyrolyzed, they are oxidized by O₂ gas. The produced SO₂ gas is excited by irradiating ultraviolet light ν_1 (190 to 230 nm). On returning to ground state, this SO₂* emits energy as fluorescent ray.

This fluorescent light ν_2 (300 to 400 nm) is converted into an electrical signal which is integrated for analysis. The sulfur concentration is obtained using a calibration curve preliminarily drawn with standard solutions.

UVFL Sulfur Diagram

Trace Sulfur Analyzer NSX-5000H /SD (/ND)

	Sulfur measurement	Nitrogen measurement (optional)
Sample	Liquid (non-aqueous) / Solid	
Analytical method	Oxidative combustion and UV fluorescence detection	Oxidative combustion and chemiluminescence detection
Furnace	Max. 1,100 °C, Openable electric furnace, 2 heating zones	
Measuring range*	Liquid: 0.05 ~ 10,000 µg/mL Solid: 0.1 ~ 10,000 µg/g	Liquid: 0.05 ~ 10,000 µg/mL Solid: 0.5 ~ 5,000 µg/g
Sample volume	Liquid: Max 100 µL, Solid: Max 30 mg	
Measurement time	Approx. 8 min	
Vacuum pump	—	Diaphragm type dry vacuum pump
Gas supply	Argon: Purity 99.98 % or more, 0.3 ± 0.1 MPa, Oxygen: Purity 99.7 % or more, 0.3 ± 0.1 MPa	
Power supply	HF-500: AC100/115 V (50/60 Hz), 1100 VA, AC230/240 V (50/60 Hz), 1800 VA, SD/ND-500: AC100-240 V, 300 VA	
Mass and weight	HF-500: Approx. 320(W) × 430(D) × 500(H) mm, Approx. 25 kg SD-500: Approx. 220(W) × 375(D) × 500(H) mm, Approx. 21 kg, ND-500: Approx. 220(W) × 375(D) × 500(H) mm, Approx. 22 kg	

*Actual measuring range depends on the sample, the matrix, the purity of reagents, gases and the condition of the unit.

Sulfur and Nitrogen simultaneous measurement is available by connecting SD-500 in series with ND-500.

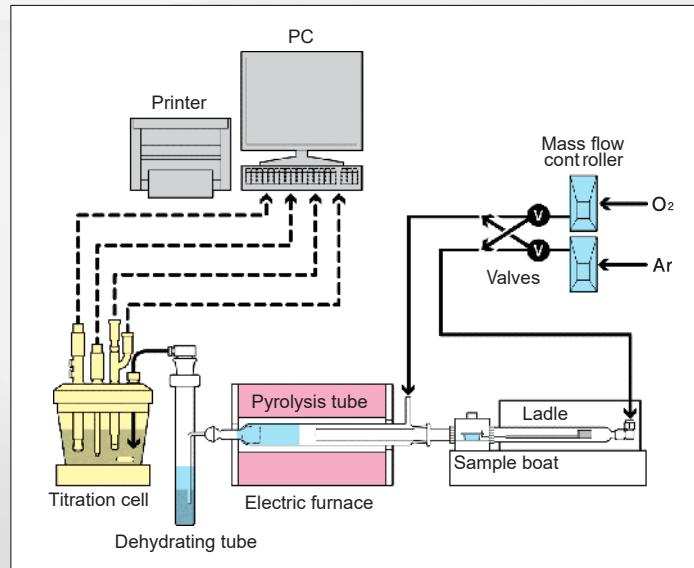
Standard test method

Chlorine : ASTM D4929, D5808, D7457
 Sulfur : ASTM D3120, D3961

Measurement principle

Chlorine

Samples are combusted in an argon/oxygen atmosphere. The resulting hydrogen chloride is transferred into a titration cell where it is automatically titrated by silver ions generated by electrolysis. The amount of chlorine is calculated from the quantity of electrical charge required for the titration.


*Chlorine measurement in inorganic samples requires optional pyrolysis tube and humidification kit.

Sulfur

Samples are combusted in an argon/oxygen atmosphere. The resulting sulfur dioxide is transferred into a titration cell where it is automatically titrated by triiodide ions generated by electrolysis. The amount of sulfur is calculated from the quantity of electrical charge required for the titration.

MCD Diagram for Chlorine (/Sulfur)

Specification for Trace Chlorine/Sulfur Analyzer NSX-5000H / MCD

	Chlorine measurement	Sulfur measurement
Sample		Liquid / Solid
Analytical method		Oxidative combustion and microcoulometric detection
Furnace		Max. 1,100 °C, Openable electric furnace, 2 heating zones
Detection electrode	Silver electrode	Platinum electrode
Measuring range*	Liquid: 0.1 ~ 5,000 µg/mL Solid: 0.5 ~ 50,000 µg/g	Liquid: 0.2 ~ 1,000 µg/mL Solid: 1.0 ~ 5,000 µg/g
Sample size		Liquid: Max. 100 µL, Solid: Max. 30 mg
Measurment time		Approx. 10minutes for 2 µg Cl/S
Gas supply		Argon: Purity 99.98 % or more, 0.3 ± 0.1 MPa , Oxygen: Purity 99.7 % or more, 0.3 ± 0.1 MPa
Power supply	HF-500: AC100/115 V (50/60 Hz), 1100 VA, AC230/240V (50/60 Hz), 1800 VA	MCD-500: AC100-240V, 150 VA
Mass and weight	HF-500: Approx. 320(W) ×430(D) ×500(H) mm, Approx. 25 kg,	MCD-500: Approx. 220(W) ×375(D) ×500(H) mm, Approx. 14 kg

*Actual measuring range depends on the sample, the matrix, the purity of reagents, gases and the condition of the unit.

Adsorbable Organic Halogens (AOX) Analysis

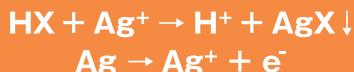
By using activated carbon technology and coulometric titration technology, adsorbable organic halogens in environmental water such as river water, lake water, and various industrial wastewater can be measured easily, quickly, and with high accuracy.

Relevant standard test method

AOX: ISO 9652 TOX: EPA 9020

Measurement principle

1. Adsorption and rinse


A liquid sample is passed through two columns filled with activated carbon. AOX, adsorbable organic halogen, remains in the column after rinsing to remove inorganic halogen compounds.

2. Combustion

After the activated carbon is extruded from the column into the boat, the AOX sample is pyrolyzed in the furnace to generate hydrogen halides.

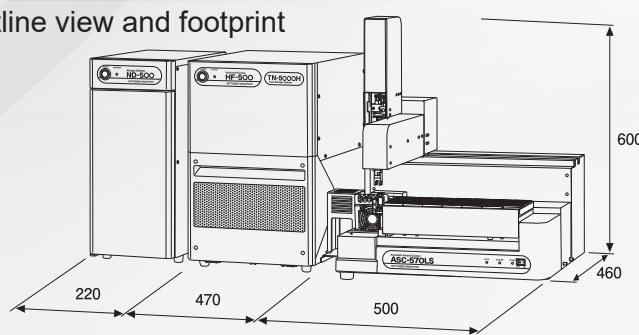
3. Titration

Hydrogen halide is titrated with Ag ions produced by electrolysis. The amount of halogen is calculated from the amount of electricity required for titration.

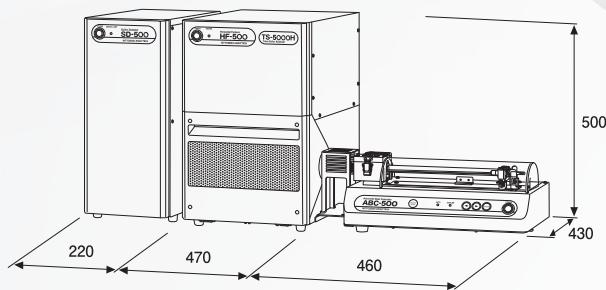
Total Organic Halogen Adsorption Unit Model TXA-04

A sample can be passed through a column filled with activated carbon, adsorbed, and rinsed with an aqueous nitrate solution. Adsorption and rinse are switched manually.

Injection	Disposable syringe 20 mL
Flow method	Automatic syringe system
Maximum flow volume	Samples: 300 mL (10 × n mL (n=1 to 30)) Rinse: 50 mL (5 × n mL (n=1 to 10))
Flow rate	3.0 mL/min (by official methods)
Syringe quantity	5 pcs (for flowing samples or washing inorganic halide)
Column	3 mm ×40 mm two-stage glass column
Filling volume of activated carbon	About 40 mg/column
Power supply	AC100/115 V, 50/60 Hz 50 VA AC 230/240 V, 50/60 Hz 50 VA
Mass and weight	330 (W) × 220 (D) × 500 (H) mm, Approx. 8 kg


	Volume, mL	n	Result, µg/L	RSD, %
River water	50	3	78	4
Distilled water	100	3	3.8	10
Industrial waste water	20*	3	54 (mg/L)	0.8

*Diluted by pure water


Material of sample boat and its characteristics

Appearance	Material	Description
	Ceramics	Mainly used for solid sample measurement. It is weaker than quartz against heat changes, and repeated use may damage the port. On the other hand, it is characterized by its high strength against substances that corrode quartz, and the capacity of the sample that can be loaded from the porcelain port is large. It can be used for automatic measurement in solid measurement mode of ASC-570LS.
	Quartz	It is mainly used for liquid sample measurement with quartz wool stuffed. Resistant to heat changes and suitable for repeated use. On the other hand, if a sample containing alkali metals or alkaline earth metals is measured, it will devitrify, so care must be taken when using it. Cannot be used for automatic measurement in solid measurement mode of ASC-570LS.
	Sintered quartz	It has the same shape as the ceramic port and is made of quartz. Resistant to heat changes and suitable for repeated use. On the other hand, if you measure a sample containing alkali metals or alkaline earth metals, it will devitrify, so be careful when using it. It can also be used for automatic measurements in the solid measurement mode of the ASC-570LS.
	Porcelain	Mainly used for solid sample measurement. Since it is relatively inexpensive, it is recommended to use it when the residue after burning is disposable. It cannot be used for automatic measurement in solid measurement mode of ASC-570LS.
	Nickel (inner boat)	An inner port that is installed inside a ceramic or sintered quartz port to prevent corrosion of the port. Since corrosive components remain in the inner port, the inner port is disposable. For sulfur determination, we do not recommend using the inner boat as it may result in lower readings.

Outline view and footprint

In combination with ASC-570LS

In combination with ABC-500

Sample application

Nitrogen(CLD) sample application

	Amount, mg	n	Result, $\mu\text{g/mL}$ or $\mu\text{g/g}$	RSD, %
Diesel	20 (μL)	3	52	2.1
Heavy oil	20 (μL) ^{*1}	3	2350	1.6
Lubricant oil	20 (μL) ^{*1}	3	375	1.8
Polycarbonate	13	5	2.5	4.5
Polyethylene	12	5	27	3.8
Epoxy resin	11	5	31	1.2
Tonner	8	5	355	1.5
Rubber	5	3	270	1.2
Pulp	3	5	3750	2.1

* Diluted by toluene

Sulfur(UVFL) sample application

	Amount, mg	n	Result, $\mu\text{g/mL}$ or $\mu\text{g/g}$	RSD, %
Naphtha	10 (μL)	5	181	0.6
Diesel	10 (μL)	3	133	0.6
Kerosene	10 (μL)	3	25	1.2
Gasoline	10 (μL)	3	145	1.8
Lubricant oil	10 (μL)	3	2870	1.2
Heavy oil	10 (μL)	3	1340	0.5
PBT	30	5	303	2.6
Pulp	5	3	206	1.6

Chlorine(MCD) sample application

	Amount, mg	n	Result, $\mu\text{g/mL}$ or $\mu\text{g/g}$	RSD, %
Toluene	100 (μL)	3	0.14	12
Naphtha	100 (μL)	3	0.17	14
Lubricant oil	50 (μL)	3	34	4.2
Waste oil	15 (μL)	3	3600	3.2
Crude oil	10	3	7.5	3.2
Polycarbonate	20	3	7.9	3.4
Aluminum foil	20	3	5.5	6.5
Rubber	10	3	580	2.1
Cement	10	3	280	4.1

Sulfur(MCD) sample application

	Amount, mg	n	Result, $\mu\text{g/mL}$ or $\mu\text{g/g}$	RSD, %
Lubricant oil A	5 (μL)	3	1.2 (%)	3.5
Lubricant oil B	10 (μL)	3	0.76 (%)	3.5
Lubricant oil C	10 (μL)	3	520	4.3
Rubber	15	3	740	3.2
Epoxy resin	15	3	130	2.4
Coal	10	3	320	6.1
Coke	10	3	570	3.2
Crude oil	5	3	120	3.1

Note:

Follow instructions in manuals to correctly install, connect and operate the instruments. Contents of catalogues are subject to change without prior notice when improvements are made in performance. The actual color of the goods may appear different from color printed. All screen images are inset synthesis.

Company and product names contained herein are the trademarks or registered trademarks of the company concerned.

Safety Precautions

Read through the user's manual first before installing, piping, wiring, and operating the instrument, then always follow the manual for proper operation.

Nittoseiko Analytech

7-10-1 Chuo-rinkan, Yamato, Kanagawa, 242-0007, Japan

TEL: +81-46-278-0056 FAX: +81-46-278-0057

URL: <https://www.n-analytech.co.jp/global/>

CAT No.310101223111E

INSTRUMENTACIÓN
ANALÍTICA

www.instru-nittoseikoanalytech.es